Kerscher SJ, Okun JG, Brandt U
J Cell Sci. 1999 Jul;112 ( Pt 14):2347-54
NADH:ubiquinone oxidoreductases catalyse the first step within the diverse pathways of mitochondrial NADH oxidation. In addition to the energy-conserving form commonly called complex I, fungi and plants contain much simpler alternative NADH:ubiquinone oxido-reductases that catalyze the same reaction but do not translocate protons across the inner mitochondrial membrane. Little is known about the distribution and function of these enzymes. We have identified YLNDH2 as the only gene encoding an alternative NADH:ubiquinone oxidoreductase (NDH2) in the obligate aerobic yeast Yarrowia lipolytica. Cells carrying a deletion of YLNDH2 were fully viable; full inhibition by piericidin A indicated that complex I activity was the sole NADH:ubiquinone oxidoreductase activity left in the deletion strains. Studies with intact mitochondria revealed that NDH2 in Y. lipolytica is oriented towards the external face of the mitochondrial inner membrane. This is in contrast to the situation seen in Saccharomyces cerevisiae, Neurospora crassa and in green plants, where internal alternative NADH:ubiquinone oxidoreductases have been reported. Phylogenetic analysis of known NADH:ubiquinone oxidoreductases suggests that during evolution conversion of an ancestral external alternative NADH:ubiquinoneoxidoreductase to an internal enzyme may have paved the way for the loss of complex I in fermenting yeasts like S. cerevisiae.
Lützelberger M, Gross T, Käufer NF
Nucleic Acids Res. 1999 Jul 1;27(13):2618–26
We isolated srp2, a gene encoding a protein composed of two RNA binding domains (RBDs) at the N-terminus followed by an arginine-rich region that is flanked by two short SR (serine/arginine) elements. The RBDs contain the signatures RDADDA and SWQDLKD found in RBD1 and RBD2 of all typical metazoan SR proteins. srp2 is essential for growth. We have analyzed in vivo the role of the modular domains of Srp2 by testing specific mutations in a conditional strain for complementation. We found that RBD2 is essential for function and determines the specificity of RBD1 in Srp2. Replacement of the first RBD with RBD1 of Srp1 of fission yeast does not change this specificity. The two SR elements in the C-terminus of Srp2are also essential for function in vivo. Cellular distribution analysis with green fluorescence protein fused to portions of Srp2 revealed that the SRelements are necessary to target Srp2 to the nucleus. Furthermore, overexpression of modular domains of Srp2 and Srp1 show different effects on pre-mRNA splicing activity of the tfIId gene. Taken together, these findings are consistent with the notion that the RBDs of these proteins may be involved in pre-mRNA recognition.
Schmidt H, Richert K, Drakas RA, Käufer NF
Genetics. 1999 Nov;153(3):1183–91
We have identified two classical extragenic suppressors, spp41 and spp42, of the temperature sensitive (ts) allele prp4-73. The prp4(+) gene of Schizosaccharomyces pombe encodes a protein kinase. Mutations in both suppressor genes suppress the growth and the pre-mRNA splicing defect of prp4-73(ts) at the restrictive temperature (36 degrees ). spp41 and spp42 are synthetically lethal with each other in the presence of prp4-73(ts), indicating a functional relationship between spp41 and spp42. The suppressor genes were mapped on the left arm of chromosome I proximal to the his6 gene. Based on our mapping data we isolated spp42 by screening PCR fragments for functional complementation of the prp4-73(ts) mutant at the restrictive temperature. spp42 encodes a large protein (p275), which is the homologue of Prp8p. This protein has been shown in budding yeastand mammalian cells to be a bona fide pre-mRNA splicing factor. Taken together with other recent genetic and biochemical data, our results suggest that Prp4 kinase plays an important role in the formation of catalytic spliceosomes.
Gniewosz M, Bugajewska A, Raczyńska-Cabaj A, Duszkiewicz-Reinhard W, Primik M
Progress in Biotechnology. 2000;17:73-79
The presence of the killer factor in yeast may be a good marker for the identification of a strain because of the ease of its detection under laboratory conditions. The aim of the present research was the introduction of the killer factor into the cells of distillery and wine yeast using protoplast electrofusion. As a result of the performed protoplast electrofusion of the laboratory strain S. cerevisiae ATCC 42300 K1 and S. cerevisiaeof the S.o./1 strain; hybrids with the killer factor, whose stability did not change during two years of storage, were obtained.
Baum M, Clarke L
Mol Cell Biol. 2000 Apr;20(8):2852–64
Two functionally important DNA sequence elements in centromeres of the fission yeast Schizosaccharomyces pombe are the centromeric central core and the K-type repeat. Both of these DNA elements show internal functional redundancy that is not correlated with a conserved DNA sequence. Specific, but degenerate, sequences in these elements are bound in vitro by the S. pombe DNA-binding proteins Abp1p (also called Cbp1p) and Cbhp, which are related to the mammalian centromere DNA-binding protein CENP-B. In this study, we determined that Abp1p binds to at least one of its target sequences within S. pombe centromere II central core (cc2) DNA with an affinity (K(s) = 7 x 10(9) M(-1)) higher than those of other known centromere DNA-binding proteins for their cognate targets. In vivo, epitope-tagged Cbhp associated with centromeric K repeat chromatin, as well as with noncentromeric regions. Like abp1(+)/cbp1(+), we found that cbh(+) is not essential in fission yeast, but a strain carrying deletions of both genes (Deltaabp1 Deltacbh) is extremely compromised in growth rate and morphology and missegregates chromosomes at very high frequency. The synergism between the two null mutations suggests that these proteins perform redundant functions in S. pombe chromosome segregation. In vitro assays with cell extracts with these proteins depleted allowed the specific assignments of several binding sites for them within cc2 and the K-type repeat. Redundancy observed at the centromere DNA level appears to be reflected at the protein level, as no single member of the CENP-B-related protein family is essential for proper chromosome segregation in fission yeast. The relevance of these findings to mammalian centromeres is discussed.
Clark-Walker GD, Chen XJ
Genetics. 2001 Nov;159(3):929–38
Loss of mtDNA or mitochondrial protein synthesis cannot be tolerated by wild-type Kluyveromyces lactis. The mitochondrial function responsible for rho(0)-lethality has been identified by disruption of nuclear genes encoding electron transport and F(0)-ATP synthase components of oxidativephosphorylation. Sporulation of diploid strains heterozygous for disruptions in genes for the two components of oxidative phosphorylation results in the formation of nonviable spores inferred to contain both disruptions. Lethality of spores is thought to result from absence of a transmembrane potential, Delta Psi, across the mitochondrial inner membrane due to lack of proton pumping by the electron transport chain or reversal of F(1)F(0)-ATP synthase. Synergistic lethality, caused by disruption of nuclear genes, or rho(0)-lethality can be suppressed by the atp2.1 mutation in the beta-subunit of F(1)-ATPase. Suppression is viewed as occurring by an increased hydrolysis of ATP by mutant F(1), allowing sufficient electrogenic exchange by the translocase of ADP in the matrix for ATP in the cytosol to maintain Delta Psi. In addition, lethality of haploid strains with a disruption of AAC encoding the ADP/ATP translocase can be suppressed by atp2.1. In this case suppression is considered to occur by mutant F(1) acting in the forward direction to partially uncouple ATP production, thereby stimulating respiration and relieving detrimental hyperpolarization of the inner membrane. Participation of the ADP/ATP translocase in suppression of rho(0)-lethality is supported by the observation that disruption of AAC abolishes suppressor activity of atp2.1.
Zuo XM, Clark-Walker GD, Chen XJ
Genetics. 2002 Apr;160(4):1389-400
The Saccharomyces cerevisiae MGM101 gene encodes a DNA-binding protein targeted to mitochondrial nucleoids. MGM101 is essential formaintenance of a functional rho(+) genome because meiotic segregants, with a disrupted mgm101 allele, cannot undergo more than 10 divisions on glycerol medium. Quantitative analysis of mtDNA copy number in a rho(+) strain carrying a temperature-sensitive allele, mgm101-1, revealed that the amount of mtDNA is halved each cell division upon a shift to the restrictive temperature. These data suggest that mtDNA replication is rapidly blocked in cells lacking MGM101. However, a small proportion of meiotic segregants, disrupted in MGM101, have rho(-) genomes that are stably maintained. Interestingly, all surviving rho(-) mtDNAs contain an ori/rep sequence. Disruption of MGM101 in hypersuppressive (HS) strains does not have a significant effect on the propagation of HS rho(-) mtDNA. However, in petites lacking an ori/rep, disruption of MGM101 leads to either a complete loss or a dramatically decreased stability of mtDNA. This discriminatory effect of MGM101 suggests that replication of rho(+) and ori/rep-devoid rho(-) mtDNAs is carried out by the same process. By contrast, the persistence of ori/rep-containing mtDNA in HS petites lacking MGM101 identifies a distinct replication pathway. The alternative mtDNA replication mechanism provided by ori/rep is independent of mitochondrial RNA polymerase encoded by RPO41 as a HS rho(-) genome is stably maintained in a mgm101, rpo41 double mutant.
Sherman F
Methods Enzymol. 2002;350:3-41
The yeast Saccharomyces cerevisiae is now recognized as a model system representing a simple eukaryote whose genome can be easily manipulated. Yeast has only a slightly greater genetic complexity than bacteria and shares many of the technical advantages that permitted rapid progress in the molecular genetics of prokaryotes and their viruses. Some of the properties that make yeast particularly suitable for biological studies include rapid growth, dispersed cells, the ease of replica plating and mutant isolation, a well-defined genetic system, and most important, a highly versatile DNA transformation system. Being nonpathogenic, yeast can be handled with little precautions. Large quantities of normal baker's yeast are commercially available and can provide a cheap source for biochemical studies. The development of DNA transformation has made yeast particularly accessible to gene cloning and genetic engineering techniques. Structural genes corresponding to virtually any genetic trait can be identified by complementation from plasmid libraries. Plasmids can be introduced into yeast cells either as replicating molecules or by integration into the genome. In contrast to most other organisms, integrative recombination of transforming DNA in yeast proceeds exclusively via homologous recombination. Cloned yeast sequences, accompanied by foreign sequences on plasmids, can therefore be directed at will to specific locations in the genome.
Richert K, Schmidt H, Gross T, Käufer F
Mol Genet Genomics. 2002 Mar;267(1):88–95
The protein kinase Prp4p of Schizosaccharomyces pombe is involved in control of the formation of active spliceosomes, phosphorylating the spliceosomal component Prp1p. The kinase domain of Prp4p is closely related to cyclin-dependent kinases (CDKs) and mitogen-activated kinases (MAPKs). A mutational analysis of the highly conserved amino acid sequence ALKHP in subdomain XI of this kinase showed that structural features of this sequence are important for the function of the kinase. We identified ubp21 as a high-copy-number suppressor of a mutation in the ALKHP motif. Characterization of this gene revealed that it encodes a deubiquitinating enzyme belonging to the family of ubiquitin-specific processing proteases (Ubps). The results presented in this report are consistent with the notion that the deubiquitinating activity of Ubp21p may be involved in regulating the steady-state levels of proteins including Prp4p.
Piper PW, Jones GW, Bringloe D, Harris N, MacLean M, Mollapour M
Aging Cell. 2002 Dec;1(2):149–57
Prohibitin proteins have been implicated in cell proliferation, aging, respiratory chain assembly and the maintenance of mitochondrial integrity. The prohibitins of Saccharomyces cerevisiae, Phb1 and Phb2, have strong sequence similarity with their human counterparts prohibitin and BAP37, making yeast a good model organism in which to study prohibitin function. Both yeast and mammalian prohibitins form high-molecular-weight complexes (Phb1/2 or prohibitin/BAP37, respectively) in the inner mitochondrial membrane. Expression of prohibitins declines with senescence, both in mammalian fibroblasts and in yeast. With a total loss of prohibitins, the replicative (budding) life span of yeast is reduced, whilst the chronologicallife span (the survival of stationary cells over time) is relatively unaffected. This effect of prohibitin loss on the replicative life span is still apparent in the absence of an assembled respiratory chain. It also does not reflect the production of extrachromosomal ribosomal DNA circles (ERCs), a genetic instability thought to be a major cause of replicative senescence in yeast. Examination of cells containing a mitochondrially targeted green fluorescent protein indicates this shortened life span is a reflection of defective mitochondrial segregation from the mother to the daughter in the oldmother cells of phb mutant strains. Old mother phb mutant cells display highly aberrant mitochondrial morphology and, frequently, a delayedsegregation of mitochondria to the daughter. They often arrest growth with their last bud strongly attached and with the mitochondria adjacent to the septum between the mother and the daughter cell.