349 Citations Found

Garcia Sanchez R, Solodovnikova N, Wendland J Yeast. 2012 Aug;29(8):343–55 Lager beer brewing relies on strains collectively known as Saccharomyces carlsbergensis, which are hybrids between S. cerevisiae and S. eubayanus-like strains. Lager yeasts are particularly adapted to low-temperature fermentations. Selection of new yeast strains for improved traits orfermentation performance is laborious, due to the allotetraploid nature of lager yeasts. Initially, we have generated new F1 hybrids by classical genetics, using spore clones of lager yeast and S. cerevisiae and complementation of auxotrophies of the single strains upon mating. These hybrids were improved on several parameters, including growth at elevated temperature and resistance against high osmolarity or high ethanol concentrations. Due to the uncertainty of chromosomal make-up of lager yeast spore clones, we introduced molecular markers to analyse mating-type composition by PCR. Based on these results, new hybrids between a lager and an ale yeast strain were isolated by micromanipulation. These hybrids were not subject to genetic modification. We generated and verified 13 hybrid strains. All of these hybrid strains showed improved stressresistance as seen in the ale parent, including improved survival at the end of fermentation. Importantly, some of the strains showed improvedfermentation rates using 18° Plato at 18-25°C. Uniparental mitochondrial DNA inheritance was observed mostly from the S. cerevisiae parent.

Alkim C, Benbadis L, Yilmaz U, Cakar P, François JM Alkim C, Benbadis L, Yilmaz U, Cakar P, François JM Cobalt is an important metal ion with magnetic properties that is widely used for several industrial applications. Overexposure to cobalt ions can be highly toxic for the organisms because they usually overwhelm the endogenous physiological system that maintains their homeostasis causing (geno)toxic effects. To gain insight into the mechanism of cobalt toxicity, we characterized at the molecular and genetic levels a cobalt resistant CI25E Saccharomyces cerevisiae strain previously isolated by an in vivo evolutionary engineering strategy, and which was able to grow on 5 to 10 mM CoCl2. This evolved strain showed cross-resistance to other metal ions including iron, manganese, nickel and zinc, but not to copper. Moreover, the cobalt resistant trait was semi-dominant, and linked to more than one gene, as indicated by the absence of 2(+):2(-) segregation of the cobaltresistance. Genome wide transcriptional profiling revealed a constitutive activation of the iron regulon that could be accounted for by a constitutive nuclear localization of the transcriptional activator Aft1. However, the presence of Aft1 in the nucleus was not a prerequisite for hyper-resistance tocobalt, since a mutant defective in nuclear monothiol glutaredoxin encoding GRX3 and GRX4 that also leads to nuclear localization of Aft1 wascobalt hypersensitive. In addition, the loss of AFT1 only partially abolished the cobalt resistance in the evolved strain, and the deletion of COT1 encoding the major vacuolar transporter of cobalt had only a minor effect on this trait. Paradoxically to the activation of iron regulon, the evolvedstrain was hypersensitive to the iron chelator BPS, and this hypersensitivity was abrogated by cobalt ions. Taken together, this work suggested thatcobalt resistance is not merely dependent upon activation of AFT1, but it likely implicates other mechanisms including intracellular reallocation ofiron into important compartments whose function is dependent on this metal and adaptation of some cellular proteins to use Co(2+) in place of Fe(2+) for their catalytic activities.

Vogan AA, Khankhet J, Xu J PLoS One. 2013 May 14;8(5):e62790 In the majority of diploid eukaryotes, each meiotic process generates four haploid gametes with each containing a single recombinant nucleus. In some species and/or some meiotic processes, aneuploid or diploid gametes can also be generated due to chromosomal non-disjunction and/or the co-packaging of two of the four haploid nuclei into the same gamete. Here we show that another process is involved in generating genotypes of sexual progeny from a hybrid cross between two divergent lineages of the human fungal pathogen Cryptococcus neoformans. Through micro-dissection of 1358 basidiospores from 194 basidia and genotyping using 33 co-dominant genetic markers, the genotypes of all 230 germinated basidiospores from 94 basidia were obtained. The minimum haploid genotypes required to constitute the observed genotypes from each basidium were then inferred. Our results demonstrated that more than four haploid nuclear genotypes are required to explain the observed genotypes of basidiospores in seven of the 94 basidia. Our results suggest that mitotic recombination within basidia must be involved to produce the observed genotypes in these seven basidia. The mitotic recombination likely includes both chromosomal loss and crossing over. This novel recombinationprocess could play an important role in generating the genotypic and phenotypic diversities of this important human pathogen.

Lengeler KB, Wasserstrom L, Walther A, Wendland J Microbiol Res. 2013 Dec 14;168(10):607-14 Fungal cells are exposed to rapidly changing environmental conditions, in particular with regard to the osmotic potential. This requires constant remodeling of the cell wall and, therefore, the cell wall integrity (CWI) MAP-kinase pathway plays a major role in shaping the fungal cell wall to protect from adverse external stresses. To provide a comprehensive functional analysis of the Ashbya gossypii CWI pathway we generated a set of ten deletion mutants in conserved components including the cell surface sensors AgWSC1 and AgMID2, a putative Rho1-guanine nucleotide exchange factor, AgTUS1, the protein kinase C, AgPKC1, the MAP-kinases AgBCK1, AgMKK1 and AgMPK1, and transcription factors known to be involved in CWI signaling AgRLM1, AgSWI4 and AgSWI6. Deletion of AgPKC1 shows a severe growth defect with frequent tip cell lysis. Deletion of components of the MAP-kinase module generates a pronounced colony lysis phenotype in older regions of the mycelium. Cytoplasmic leakage was assayed using alkaline phosphatase and β-galactosidase release assays. This indicated that the lysis phenotypes of CWI pathway mutants may be useful to facilitate the isolation of riboflavin from A. gossypii. Remarkably, the Agwsc1 mutant showed a strong (up to 8-fold) increase of riboflavin in the growth medium compared to the parental strain.

Guadalupe-Medina V, Metz B, Oud B, van Der Graaf CM, Mans R, Pronk JT, van Maris AJ Microb Biotechnol. 2014 Jan;7(1):44-53 Glycerol production by Saccharomyces cerevisiae, which is required for redox-cofactor balancing in anaerobic cultures, causes yield reduction in industrial bioethanol production. Recently, glycerol formation in anaerobic S. cerevisiae cultures was eliminated by expressing Escherichia coli (acetylating) acetaldehyde dehydrogenase (encoded by mhpF) and simultaneously deleting the GPD1 and GPD2 genes encoding glycerol-3-phosphate dehydrogenase, thus coupling NADH reoxidation to reduction of acetate to ethanol. Gpd⁻ strains are, however, sensitive to high sugarconcentrations, which complicates industrial implementation of this metabolic engineering concept. In this study, laboratory evolution was used to improve osmotolerance of a Gpd⁻ mhpF-expressing S. cerevisiae strain. Serial batch cultivation at increasing osmotic pressure enabled isolation of an evolved strain that grew anaerobically at 1 M glucose, at a specific growth rate of 0.12 h⁻¹. The evolved strain produced glycerol at lowconcentrations (0.64 ± 0.33 g l⁻¹). However, these glycerol concentrations were below 10% of those observed with a Gpd⁺ reference strain. Consequently, the ethanol yield on sugar increased from 79% of the theoretical maximum in the reference strain to 92% for the evolved strains. Genetic analysis indicated that osmotolerance under aerobic conditions required a single dominant chromosomal mutation, and one further mutation in the plasmid-borne mhpF gene for anaerobic growth.

Ali M, Chernova TA, Newnam GP, Yin L, Shanks J, Karpova TS, Lee A, Laur O, Subramanian S, Kim D, McNally JG, Seyfried NT, Chernoff YO, Wilkinson KD J Biol Chem. 2014 Oct 3;289(40):27625-39 Yeast prions are self-propagating amyloid-like aggregates of Q/N-rich protein that confer heritable traits and provide a model of mammalian amyloidoses. [PSI(+)] is a prion isoform of the translation termination factor Sup35. Propagation of [PSI(+)] during cell division under normal conditions and during the recovery from damaging environmental stress depends on cellular chaperones and is influenced by ubiquitin proteolysis and the actin cytoskeleton. The paralogous yeast proteins Lsb1 and Lsb2 bind the actin assembly protein Las17 (a yeast homolog of human Wiskott-Aldrich syndrome protein) and participate in the endocytic pathway. Lsb2 was shown to modulate maintenance of [PSI(+)] during and after heat shock. Here, we demonstrate that Lsb1 also regulates maintenance of the Sup35 prion during and after heat shock. These data point to the involvement of Lsb proteins in the partitioning of protein aggregates in stressed cells. Lsb1 abundance and cycling between actin patches, endoplasmic reticulum, and cytosol is regulated by the Guided Entry of Tail-anchored proteins pathway and Rsp5-dependent ubiquitination. Heat shock-induced proteolytic processing of Lsb1 is crucial for prion maintenance during stress. Our findings identify Lsb1 as another component of a tightly regulated pathway controlling protein aggregation in changing environments.

Mitsumasu K, Liu Z-S, Tang Y-Q, Akamatsu T, Taguchi H, Kida K J Biosci Bioeng. 2014 Dec;118(6):689–95 Continuous fermentation using the industrial Saccharomyces cerevisiae diploid strain WW was carried out under acidic or high-temperatureconditions to achieve acid- or thermo-tolerant mutants. Mutants isolated at pH 2.5 and 41°C showed improved growth and fermentation ability underacidic and elevated temperature conditions. Haploid strains WW17A1 and WW17A4 obtained from the mutated diploid strain WW17A showed better growth and 4.5-6.5% higher ethanol yields at pH 2.7 than the original strains. Haploid strain WW12T4 obtained from mutated diploid strain WW12T showed 1.25-1.50 times and 2.8-4.7 times higher total cell number and cell viability, respectively, than the original strains at 42°C. Strain AT, which had significantly improved acid- and thermo-tolerance, was developed by mating strain WW17A1 with WW12T4. Batch fermentation at 41°C and pH 3.5 showed that the ethanol concentration and yield achieved during fermentation by strain AT were 55.4 g/L and 72.5%, respectively, which were 10 g/L and 13.4% higher than that of the original strain WW. The present study demonstrates that continuous cultivation followed by haploidization andmating is a powerful approach for enhancing the tolerance of industrial strains.

Sandell LL, Zakian VA Cell. 1993 Nov 19;75(4):729–39 Yeast strains were constructed in which a single telomere could be eliminated from the end of a dispensable chromosome. In wild-type cells, elimination of a telomere caused a RAD9-mediated cell cycle arrest, indicating that telomeres help cells to distinguish intact chromosomes from damaged DNA. However, many cells recovered from the arrest without repairing the damaged chromosome, replicating and segregating it for as many as ten cell divisions prior to its eventual loss. Telomere elimination caused a dramatic increase in loss of the chromosome in all strains examined, demonstrating that yeast telomeres are also essential for maintaining chromosome stability. Thus, in spite of checkpoint and DNA damage repair systems, many chromosomes that lose a telomere are themselves destined for loss.

Rieger K-J, Aljinovic G, Lazowska J, Pohl TM, Slonimski PP Curr Genet. 1997;32(3):163–74 We describe a new nuclear gene, CBT1 (Cytochrome B Termination), specifically involved in the generation of mature mRNA of cytochrome b in yeast mitochondria. Disruption of CBT1 (corresponding to ORF YKL 208W) results in a respiratory deficiency (no growth on acetate and ethanol, a reduced growth on glycerol, and a moderate growth on lactate). Cytochrome b is practically undetectable spectrally, while cytochromes a and a3 (cytochrome oxidase) appear unaffected by the disruption. Analysis of mitochondrial transcripts shows a reduced abundance of cytb mRNA, which in addition is approximately 200 nucleotides longer than that of the wild-type. Sequencing of the 3' region of the mutant cytb mRNA with an oligonucleotide primer positioned 148 nt downstream from the dodecamer sequence ("end-of-messenger" signal), demonstrates that the mutant transcript is extended beyond this position and is not processed at the conserved dodecamer cleavage site. The CBT1 gene product may be one of the components required for the exact 3' cleavage of the cytb messenger and may also be related to RNA splicing, since the intron-containing cytbgene is not as well expressed as the intron-less gene and the respiratory deficiency is more severe. We propose, that the CBT1 protein is necessary for the correct trimming of the end of cytb pre-mRNA and may be a part of the multi-component complex involved in this process.

Halverson D, Baum M, Stryker J, Carbon J, Clarke L J Cell Biol. 1997 Feb 10;136(3):487–500 Genetic and biochemical strategies have been used to identify Schizosaccharomyces pombe proteins with roles in centromere function. One protein, identified by both approaches, shows significant homology to the human centromere DNA-binding protein, CENP-B, and is identical to Abp1p (autonomously replicating sequence-binding protein 1) (Murakami, Y., J.A. Huberman, and J. Hurwitz. 1996. Proc. Natl. Acad. Sci. USA. 93:502-507). Abp1p binds in vitro specifically to at least three sites in centromeric central core DNA of S. pombe chromosome II (cc2). Overexpression of abp1 affects mitotic chromosome stability in S. pombe. Although inactivation of the abp1 gene is not lethal, the abp1 null strain displays marked mitotic chromosome instability and a pronounced meiotic defect. The identification of a CENP-B-related centromere DNA-binding protein in S. pombe strongly supports the hypothesis that fission yeast centromeres are structurally and functionally related to the centromeres of higher eukaryotes.