Corda Y, Lee SE, Guillot S, Walther A, Sollier J, Arbel-Eden A, Haber JE, Géli V
Genes Cells. 2005 Dec;10(12):1189–202
The Rho GTPase acts as a binary molecular switch by converting between a GDP-bound inactive and a GTP-bound active conformational state. The guanine nucleotide exchange factors (GEFs) are critical activators of Rho. Rho1 has been shown to regulate actin cytoskeleton and cell wallsynthesis in the fission yeast Schizosaccharomyces pombe. Here we studied function of fission yeast RhoGEFs, Rgf1, Rgf2, and Rgf3. It was shown that these proteins have similar molecular structures, and function as GEFs for Rho1. Disruption of either rgf1 or rgf2 did not show a serious effect on the cell. On the other hand, disruption of rgf3 caused severe defects in contractile ring formation, F-actin patch localization, and septation during cytokinesis. Rgf1 and Rgf2 were localized to the cell ends during interphase and the septum. Rgf3 formed a ring at the division site, which was located outside the contractile ring and inside the septum where Rho1 was accumulated. In summary, Rgf1 and Rgf2 show functional redundancy, and roles of these RhoGEFs are likely to be different from that of Rgf3. Rho1 is likely to be activated by Rgf3 at the division site, andinvolved in contractile ring formation and/or maintenance and septation.
Gachet Y, Codlin S, Hyams JS, Mole SE
J Cell Sci. 2005 Dec 1;118(Pt 23):5525–36
We have cloned the Schizosaccharomyces pombe homologue of the human Batten disease gene, CLN3. This gene, btn1, encodes a predicted transmembrane protein that is 30% identical and 48% similar to its human counterpart. Cells deleted for btn1 were viable but had enlarged and more alkaline vacuoles. Conversely overexpression of Btn1p reduced both vacuole diameter and pH. Thus Btn1p regulates vacuole homeostasis. The vacuolar defects of btn1Delta cells were rescued by heterologous expression of CLN3, proving that Btn1p and CLN3 are functional homologues. Thedisease severity of Batten disease-causing mutations (G187A, E295K and V330F), when expressed in btn1 appeared to correlate with their effect on vacuolar pH, suggesting that elevated lysosomal pH contributes to the disease process. In fission yeast, both Btn1p and CLN3 trafficked to thevacuole membrane via early endocytic and pre-vacuolar compartments, and localisation of Btn1p to the vacuole membrane was dependent on the Ras GTPase Ypt7p. Importantly, vacuoles in cells deleted for both ypt7 and btn1 were larger and more alkaline than those of cells deleted for ypt7 alone, indicating that Btn1p has a functional role prior to reaching the vacuole. Consistently, btn1 and vma1, the gene encoding subunit A of the V1 portion of vATPase, showed conditional synthetic lethality, and in cells deleted for vma1 (a subunit of the vacuolar ATPase) Btn1p was essential for septum deposition during cytokinesis.
Lopes J, Ribeyre C, Nicolas A
Mol Cell Biol. 2006 Sep;26(17):6675-8
Genomes contain tandem repeat blocks that are at risk of expansion or contraction. The mechanisms of destabilization of the human minisatelliteCEB1 (arrays of 36- to 43-bp repeats) were investigated in a previously developed model system, in which CEB1-0.6 (14 repeats) and CEB1-1.8 (42 repeats) alleles were inserted into the genome of Saccharomyces cerevisiae. As in human cells, CEB1 is stable in mitotically growing yeast cells but is frequently rearranged in the absence of the Rad27/hFEN1 protein involved in Okazaki fragments maturation. To gain insight into this mode of destabilization, the CEB1-1.8 and CEB1-0.6 human alleles and 47 rearrangements derived from a CEB1-1.8 progenitor in rad27Delta cells were sequenced. A high degree of polymorphism of CEB1 internal repeats was observed, attesting to a large variety of homology-driven rearrangements. Simple deletion, double deletion, and highly complex events were observed. Pedigree analysis showed that all rearrangements, even the mostcomplex, occurred in a single generation and were inherited equally by mother and daughter cells. Finally, the rearrangement frequency was found to increase with array size, and partial complementation of the rad27Delta mutation by hFEN1 demonstrated that the production of novel CEB1 alleles is Rad52 and Rad51 dependent. Instability can be explained by an accumulation of unresolved flap structures during replication, leading to the formation of recombinogenic lesions and faulty repair, best understood by homology-dependent synthesis-strand displacement and annealing.
Jordanova A, Irobi J, Thomas FP, Van Dijck P, Meerschaert K, Dewil M, Dierick I, Jacobs A, De Vriendt E, Guergueltcheva V, Rao CV, Tournev I, Gondim FA, D'Hooghe M, Van Gerwen V, Callaerts P, Van Den Bosch L, Timmermans JP, Robberecht W, Gettemans J, Thevelein JM, De Jonghe P, Kremensky I, Timmerman V
Nat Genet. 2006 Feb;38(2):197–202
Charcot-Marie-Tooth (CMT) neuropathies are common disorders of the peripheral nervous system caused by demyelination or axonal degeneration, or a combination of both features. We previously assigned the locus for autosomal dominant intermediate CMT neuropathy type C (DI-CMTC) to chromosome 1p34-p35. Here we identify two heterozygous missense mutations (G41R and E196K) and one de novo deletion (153-156delVKQV) intyrosyl-tRNA synthetase (YARS) in three unrelated families affected with DI-CMTC. Biochemical experiments and genetic complementation in yeast show partial loss of aminoacylation activity of the mutant proteins, and mutations in YARS, or in its yeast ortholog TYS1, reduce yeast growth. YARS localizes to axonal termini in differentiating primary motor neuron and neuroblastoma cultures. This specific distribution is significantly reduced in cells expressing mutant YARS proteins. YARS is the second aminoacyl-tRNA synthetase found to be involved in CMT, thereby linking protein-synthesizing complexes with neurodegeneration.
Win TZ, Draper S, Read RL, Pearce J, Norbury CJ, Wang S-W
Mol Cell Biol. 2006 Mar;26(5):1710–21
Polyadenylation in eukaryotes is conventionally associated with increased nuclear export, translation, and stability of mRNAs. In contrast, recent studies suggest that the Trf4 and Trf5 proteins, members of a widespread family of noncanonical poly(A) polymerases, share an essential function in Saccharomyces cerevisiae that involves polyadenylation of nuclear RNAs as part of a pathway of exosome-mediated RNA turnover. Substrates for this pathway include aberrantly modified tRNAs and precursors of snoRNAs and rRNAs. Here we show that Cid14 is a Trf4/5 functional homolog in the distantly related fission yeast Schizosaccharomyces pombe. Unlike trf4 trf5 double mutants, cells lacking Cid14 are viable, though they suffer an increased frequency of chromosome missegregation. The Cid14 protein is constitutively nucleolar and is required for normal nucleolar structure. A minor population of polyadenylated rRNAs was identified. These RNAs accumulated in an exosome mutant, and their presence was largely dependent on Cid14, in line with a role for Cid14 in rRNA degradation. Surprisingly, both fully processed 25S rRNA and rRNA processing intermediates appear to be channeled into this pathway. Our data suggest that additional substrates may include the mRNAs of genes involved in meiotic regulation. Polyadenylation-assisted nuclear RNA turnover is therefore likely to be a common eukaryotic mechanism affecting diverse biological processes.
Mulvihill DP, Edwards SR, Hyams JS
Cell Motil Cytoskeleton. 2006 Mar;63(3):149–61
Cytokinesis in fission yeast involves the coordination of septum deposition with the contraction of a cytokinetic actomyosin ring. We have examined the role of the type V myosin Myo52 in the coupling of these two events by the construction of a series of deletion mutants of the Myo52 tail and a further mutant within the ATP binding domain of the head. Each mutant protein was ectopically expressed in fission yeast cells. Each truncation was assayed for the ability to localize to the cell poles and septum (the normal cellular locations of Myo52) and to rescue the morphology defects and temperature sensitivity of a myo52Delta strain. A region within the Myo52 tail (amino acids 1320-1503), with a high degree of similarity to the vesicle-binding domain of the budding yeast type V myosin Myo2p, was essential for Myo52's role in the maintenance of growth polarity and cell division. A separate region (amino acids 1180-1320) was required for Myo52 foci to move throughout the cytoplasm; however, constructs lacking this region, but which retained the ability to dimerize still associated with actin at sites of cell growth. Not all of the Myo52 truncations which localized rescued the morphological defects of myo52Delta, demonstrating that loss of function was not simply brought about by an inability of mutant proteins to target the correct cellular location. By contrast, Myo52 motor activity was required for both localization and cellular function. myo52Delta cells were unable to efficiently localize the beta-1,3-glucan synthase, Bgs1, either at the cell poles or at the division septum, regions of cell wall deposition. Bgs1 andMyo52 localized to vesicle-like dots at the poles in interphase and these moved together to the septum at division. These data have led to the formulation of a model in which Myo52 is responsible for the delivery of Bgs1 and associated molecules to polar cell growth regions during interphase. On the commencement of septum formation, Myo52 transports Bgs1 to the cell equator, thus ensuring the accurate deposition of beta-1,3-glucan at the leading edge of the primary septum.
Piper PW, Harris NL, MacLean M
Mech Ageing Dev. 2006 Sep;127(9):733–40
Only recently have the studies of yeast ageing started to focus on the S288c-derived strains used extensively in genomics and on the longest lifespans. Chronological longevity (stationary (G(0)) survival) of such strains is greater when cells are pre-grown on a respiratory carbon source, as compared to when they are pre-grown on glucose (the latter a respiration-repressing sugar). Prior adaptation to efficient respiratory maintenance also ensures that such chronologically aged yeast cells still display a full replicative lifespan should they reenter the cell cycle. In contrast, cells that are pre-grown on glucose exhibit marked and progressive losses of replicative potential as they age chronologically in stationary phase. Increasing therespiratory activity in glucose-grown cultures by HAP4 gene overexpression increased survival and reversed the loss of replicative potential during a subsequent stationary phase. Adaptation to efficient respiratory maintenance is therefore important, not just for maximal longevity, but also for themaintenance of a full replicative lifespan by chronologically ageing cultures of yeast. In such respiration-adapted cultures, losses of the Sch9 protein kinase or Yca1 caspase both shortened lifespan. In contrast loss of Yap1, the major transcriptional regulator of the oxidative stress response, generated a small increase in chronological lifespan in certain strain backgrounds. It would appear, therefore, that any induction of oxidative stress response genes in chronologically ageing yeast is not operating to generate an increase in longevity, even though such protective effects might be expected from the increased proxidant status of these cells over time.
Niwa O, Tange Y, Kurabayashi A
Yeast. 2006 Oct 15;23(13):937–50
Aneuploid generation and stability are biologically important. In the present study, we investigated fission yeast aneuploids, focusing on the process through which aneuploidy is resolved into stable euploidy. The viability and growth patterns of aneuploid spores were greatly influenced by culture conditions, including nutrition and temperature. Germ tube formation and DNA synthesis in a major portion of aneuploids were greatly delayed or arrested. Observation of individual spores and their growth profiles revealed that a certain type(s) of aneuploid resolved its aneuploidy into normal euploids through anomalous cell divisions, which in many cases produced dead cells. Another type of aneuploid, disomy of chromosome 3, the only maintainable aneuploid between n and 2n, showed a peculiar cell division arrest phenotype under a certain growth condition. Microcolonies that formed from this type of aneuploid often contained a population of cells that became incompetent for cell division. This cell division arrest was not due to a nutritional limitation. During this peculiar process of colony formation, stable haploids or diploids were frequently produced. All other types of aneuploids are usually inviable, at least under our experimental conditions. To examine the aneuploid issue more systematically, we constructed a system to select for disomy of chromosome 1 or 2 using intragenic complementation of ade6-M210 and -M216 alleles. This genetic selection system revealed that fission yeast aneuploids can be stabilized through structural chromosome changes, including partial duplication and circular mini-chromosomes.
La Carbona S, Le Goff X
Curr Genet. 2006 Dec;50(6):377–91
Cytokinesis requires a tight spatio-temporal coordination with mitosis to ensure proper segregation of the genetic information during cell division. Infission yeast, an actomyosin contractile ring is assembled in mitosis and dictates the site of cytokinesis. Here we investigated the functions of Kin1and Pom1, two conserved fission yeast kinases, in cell division. We found that kin1Delta is synthetically lethal with pom1Delta because double mutant cells fail to spatially organize the actomyosin ring during mitosis, leading to aberrant septum synthesis and accumulation of post-mitotic nuclei in the same cell compartment. Assembly of an Rlc1-GFP ring in the cell center at mitosis is also compromised. Similar cytokinetic defects are observed in a tea1Delta kin1Delta mutant. Furthermore, aberrant septation and nuclear accumulation are observed in a pom1Delta strain in which the Kin1 level is either down or up-regulated. Thus, a tight control of Kin1 level is critical for ensuring accurate cell division in a pom1Delta background. Since none of the kinases can substitute for each other, Kin1 and Pom1 have distinct complementary functions. We show that Kin1 is required for F-actin polarization in interphase and after completion of mitosis and this function may be essential for cytokinesis in a pom1Delta background.
Edwards-Ingram L, Gitsham P, Burton N, Warhurst G, Clarke I, Hoyle D, Oliver SG, Stateva L
Appl Environ Microbiol. 2007 Apr;73(8):2458–67
Saccharomyces boulardii, a yeast that was isolated from fruit in Indochina, has been used as a remedy for diarrhea since 1950 and is now a commercially available treatment throughout Europe, Africa, and South America. Though initially classified as a separate species ofSaccharomyces, recent publications have shown that the genome of S. boulardii is so similar to Saccharomyces cerevisiae that the two should be classified as conspecific. This raises the question of the distinguishing molecular and phenotypic characteristics present in S. boulardii that make it perform more effectively as a probiotic organism compared to other strains of S. cerevisiae. This investigation reports some of these distinguishing characteristics including enhanced ability for pseudohyphal switching upon nitrogen limitation and increased resistance to acidic pH. However, these differences did not correlate with increased adherence to epithelial cells or transit through mouse gut. Pertinent characteristics of the S. boulardiigenome such as trisomy of chromosome IX, altered copy number of a number of individual genes, and sporulation deficiency have been revealed by comparative genome hybridization using oligonucleotide-based microarrays coupled with a rigorous statistical analysis. The contributions of the different genomic and phenotypic features of S. boulardii to its probiotic nature are discussed.