349 Citations Found

Wang S-W, Read RL, Norbury CJ J Cell Sci. 2002 Feb 1;115(Pt 3):587-98 Sister chromatid cohesion, which is established during the S phase of the eukaryotic cell cycle and persists until the onset of anaphase, is essential for the maintenance of genomic integrity. Cohesion requires the multi-protein complex cohesin, as well as a number of accessory proteins includingPds5/BIMD/Spo76. In the budding yeast Saccharomyces cerevisiae Pds5 is an essential protein that localises to chromosomes in a cohesin-dependent manner. Here we describe the characterisation in the fission yeast Schizosaccharomyces pombe of pds5(+), a novel, non-essential orthologue of S. cerevisiae PDS5. The S. pombe Pds5 protein was localised to punctate nuclear foci in a manner that was dependent on the Rad21 cohesin component. This, together with additional genetic evidence, points towards an involvement of S. pombe Pds5 in sister chromatid cohesion. S. pombe pds5 mutants were hypersensitive to DNA damage and to mitotic metaphase delay, but this sensitivity was apparently not due to precocious loss of sister chromatid cohesion. These cells also suffered increased spontaneous chromosome loss and meiotic defects and their viability was dependent on the spindle checkpoint protein Bub1. Thus, while S. pombe Pds5 has an important cohesin-related role, this differs significantly from that of the equivalent budding yeast protein.

Soustelle C, Vedel M, Kolodner R, Nicolas A Genetics. 2002 Jun;161(2):535-47 In Saccharomyces cerevisiae, meiotic recombination is initiated by transient DNA double-stranded breaks (DSBs). These DSBs undergo a 5' --> 3' resection to produce 3' single-stranded DNA ends that serve to channel DSBs into the RAD52 recombinational repair pathway. In vitro studies strongly suggest that several proteins of this pathway--Rad51, Rad52, Rad54, Rad55, Rad57, and replication protein A (RPA)--play a role in the strand exchange reaction. Here, we report a study of the meiotic phenotypes conferred by two missense mutations affecting the largest subunit of RPA, which are localized in the protein interaction domain (rfa1-t11) and in the DNA-binding domain (rfa1-t48). We find that both mutant diploids exhibit reduced sporulation efficiency, very poor spore viability, and a 10- to 100-fold decrease in meiotic recombination. Physical analyses indicate that both mutants form normal levels of meiosis-specific DSBs and that the broken ends are processed into 3'-OH single-stranded tails, indicating that the RPA complex present in these rfa1 mutants is functional in the initial steps of meiotic recombination. However, the 5' ends of the broken fragments undergo extensive resection, similar to what is observed in rad51, rad52, rad55, and rad57 mutants, indicating that these RPA mutants are defective in the repair of the Spo11-dependent DSBs that initiate homologous recombination during meiosis.

Oakley TJ, Goodwin A, Chakraverty RK, Hickson ID DNA Repair. 2002 Jun 21;1(6):463–82 The Saccharomyces cerevisiae TOP3 gene encodes the type IA topoisomerase (Top3p) that is highly conserved in evolution. Deletion of TOP3 leads to a reduction in cell viability, hyper-recombination between repetitive DNA sequences, and abnormalities in both cell cycle progression and responses to DNA damaging agents. Deletion of SGS1, encoding the sole RecQ family helicase in S. cerevisiae, strongly suppresses the phenotypic effects of loss of TOP3 function. Here, we show that many of the adverse phenotypic effects of TOP3 deletion can also be partially alleviated by disruption of homologous recombination (HR) functions. This genetic interaction is seen both in strains deleted for TOP3 and in wild-type strains over-expressing a dominant-negative Top3p mutant form that confers a top3-like phenotype. Moreover, we show that this genetic interaction is conserved in the distantly-related fission yeast, Schizosaccharomyces pombe. Our results implicate topoisomerase III enzymes inrecombination repair events required for cellular protection against DNA damaging agents and DNA replication inhibitors.

Schmidt U, Lehmann K, Stahl U FEMS Yeast Res. 2002 Aug;2(3):267–76 In a screen of nuclear genes that assist splicing of mitochondrial localized group II introns in yeast we isolated low-copy number suppressors of splicing and respiratory-deficient point mutants of intron aI5gamma, the last intron of the gene encoding cytochrome c oxidase subunit I. One of the genes found contains the open reading frame (ORF) YGL064c that has previously been proposed to encode a putative RNA helicase of the DEADbox family. Deletion of the ORF gives rise to 100% cytoplasmic petites, indicating that the protein plays an essential role in the mitochondrial RNA metabolism. Overexpression of YGL064c-GFP fusions clearly revealed a mitochondrial localization of the protein. The gene encodes the fourth putative RNA helicase of Saccharomyces cerevisiae implicated in a mitochondrial function and was therefore termed MRH4 (for mitochondrial RNA helicase).

Mulvihill DP, Hyams JS J Cell Sci. 2002 Sep 15;115(Pt 18):3575–86 In dividing cells, the assembly and contraction of the cytokinetic actomyosin ring (CAR) is precisely coordinated with spindle formation and chromosome segregation. Despite having a cell wall, the fission yeast Schizosaccharomyces pombe forms a CAR reminiscent of the structure responsible for the cleavage of cells with flexible boundaries. We used the myo2-gc fission yeast strain in which the chromosomal copy of the type II myosin gene, myo2(+), is fused to the gene encoding green fluorescent protein (GFP) to investigate the dynamics of Myo2 recruitment to thecytokinetic actomyosin ring in living cells. Analysis of CAR formation in relation to spindle pole body (SPB) and centromere separation enabled us to pinpoint the timing of Myo2 recruitment into a stable CAR structure to the onset of anaphase A. Depolymerisation of actin with latrunculin B did not affect the timing of Myo2 accumulation at the cell equator (although Myo2 no longer formed a ring), whereas depolymerisation of microtubules with either thiabendazole (TBZ) or methyl 2-benzimidazolecarbamate (MBC) resulted in a delay of up to 90 minutes in CAR formation. Microtubule depolymerisation also delayed the localisation of other CAR components such as actin and Mid1/Dmf1. The delay of cytokinesis in response to loss of microtubule integrity was abolished in cells lacking the spindle assembly checkpoint protein Mad2 or containing non-functional Cdc16, a component of the fission yeast septation initiation network (SIN). The delay was also abolished in cells lacking Zfs1, a component of the previously described S. pombe cytokinesis checkpoint. Recruitment of the polo-related kinase, Plo1, a key regulator of CAR formation, to the SPBs was substantially reduced in TBZ in a Mad2-dependent manner. Loading of Cdc7, a component of the SIN and downstream of Plo1 in the cytokinesis pathway, onto the the SPBs was also delayed in TBZ to the same extent as CAR formation. We conclude that CAR formation is subject to regulation by the spindle assembly checkpoint via the loading of Plo1 onto the SPBs and the consequent activation of the SIN.

Li H, Pagé N, Bussey H Yeast. 2002 Sep 30;19(13):1097–112 The cytoplasmic tail of Kre6p, a Golgi membrane protein involved in cell wall synthesis, interacts with the actin patch assembly components Las17pand Sla1p in a two-hybrid assay, and Kre6p co-immunoprecipitates with Las17p. Kre6p showed extensive co-localization with Och1p-containing cis-Golgi vesicles. The correct localization of Kre6p requires its cytoplasmic tail, Las17p, Sla1p and Vrp1p, suggesting that the cytoplasmic tail of Kre6pacts as a receptor, linking this cis-Golgi protein to Las17p and Sla1p. The actin patch assembly mutants las17 delta, sla1delta and vrp1 delta showed elevated levels of cell wall beta-1,6-glucan, and mutant cells were capable of only a limited number of cell divisions compared to wild-type. EM image analysis and beta-1,6-glucan localization indicated abnormal wall proliferation in the mother cells of these mutants. The pattern of cell wallhypertrophy indicates a failure to restrict cell wall growth to the bud.

Gillingham AK, Pfeifer AC, Munro S Mol Biol Cell. 2002 Nov;13(11):3761–74 Large coiled-coil proteins are being found in increasing numbers on the membranes of the Golgi apparatus and have been proposed to function in tethering of transport vesicles and in the organization of the Golgi stack. Members of one class of Golgi coiled-coil protein, comprising giantin and golgin-84, are anchored to the bilayer by a single C-terminal transmembrane domain (TMD). In this article, we report the characterization of another mammalian coiled-coil protein, CASP, that was originally identified as an alternatively spliced product of the CUTL1 gene that encodes CCAAT-displacement protein (CDP), the human homologue of the Drosophila homeodomain protein Cut. We find that the Caenorhabditis elegans homologues of CDP and CASP are also generated from a single gene. CASP lacks the DNA binding motifs of CDP and was previously reported to be a nuclearprotein. Herein, we show that it is in fact a Golgi protein with a C-terminal TMD and shares with giantin and golgin-84 a conserved histidine in its TMD. However, unlike these proteins, CASP has a homologue in Saccharomyces cerevisiae, which we call COY1. Deletion of COY1 does not affect viability, but strikingly restores normal growth to cells lacking the Golgi soluble N-ethylmaleimide-sensitive factor attachment protein receptor Gos1p. The conserved histidine is necessary for Coy1p's activity in cells lacking Gos1p, suggesting that the TMD of these transmembrane Golgi coiled-coil proteins is directly involved in their function.

Mulvihill DP, Hyams JS Cell Motil Cytoskeleton. 2003 Mar;54(3):208–16 The formation and contraction of a cytokinetic actomyosin ring (CAR) is essential for the execution of cytokinesis in fission yeast. Unlike most organisms in which its composition has been investigated, the fission yeast CAR contains two type II myosins encoded by the genes myo2(+) andmyp2(+). myo2(+) is an essential gene whilst myp2(+) is dispensable under normal growth conditions. Myo2 is hence the major contractile protein of the CAR whilst Myp2 plays a more subtle and, as yet, incompletely documented role. Using a fission yeast strain in which the chromosomal copy of the myo2(+) gene is fused to the gene encoding green fluorescent protein (GFP), we analysed CAR formation and function in the presence and absence of Myp2. No change in the rate of CAR contraction was observed when Myp2 was absent although the CAR persisted longer in the contracted state and was occasionally observed to split into two discrete rings. This was also observed in myp2Delta cells following actin depolymerisation with latrunculin. CAR contraction in the absence of Myp2 was completely abolished in the presence of elevated levels of chloride ions. Thus, Myp2 appears to contribute to the stability of the CAR, in particular at a late stage of CAR contraction, and to be a component of the signalling pathway that regulates cytokinesis in response to elevated levels of chloride. To determine whether the presence of two type II myosinswas a feature of cytokinesis in other fungi that divide by septation, we searched the genomes of two filamentous fungi, Aspergillus fumigatus and Neurospora crassa, for myosin genes. As in fission yeast, both A. fumigatus and N. crassa contained myosins of classes I, II, and V. Unlike fission yeast, both contained a single type II myosin gene that, on the basis of its tail structure, was more reminiscent of Myp2 than Myo2. The significance of these observations to our understanding of septum to formation and cleavage is discussed.

Delneri D, Colson I, Grammenoudi S, Roberts IN, Louis EJ, Oliver SG Nature. 2003 Mar 6;422(6927):68–72 The Saccharomyces 'sensu stricto' yeasts are a group of species that will mate with one another, but interspecific pairings produce sterile hybrids. A retrospective analysis of their genomes revealed that translocations between the chromosomes of these species do not correlate with the group's sequence-based phylogeny (that is, translocations do not drive the process of speciation). However, that analysis was unable to infer what contribution such rearrangements make to reproductive isolation between these organisms. Here, we report experiments that take an interventionist, rather than a retrospective approach to studying speciation, by reconfiguring the Saccharomyces cerevisiae genome so that it is collinear with that of Saccharomyces mikatae. We demonstrate that this imposed genomic collinearity allows the generation of interspecific hybrids that produce a large proportion of spores that are viable, but extensively aneuploid. We obtained similar results in crosses between wild-type S. cerevisiae and the naturally collinear species Saccharomyces paradoxus, but not with non-collinear crosses. This controlled comparison of the effect of chromosomal translocation on species barriers suggests a mechanism for the generation of redundancy in the S. cerevisiae genome.

Paoletti A, Bordes N, Haddad R, Schwartz CL, Chang F, Bornens M Mol Biol Cell. 2003 Jul;14(7):2793–808 The fission yeast spindle pole body (SPB) is a nucleus-associated organelle that duplicates once each cell cycle during interphase. Duplicated SPBs serve as the poles of an intranuclear mitotic spindle after their insertion into the nuclear envelope in mitosis (Ding et al., Mol. Biol. Cell 8, 1461-1479). Here, we report the identification and characterization of Schizosaccharomyces pombe cdc31p, a member of the conserved calcium-binding centrin/CDC31 family. Immunofluorescence and immunoelectron microscopy show that cdc31p is a SPB component localized at the half-bridgestructure of the SPB. cdc31 is an essential gene and Deltacdc31 cells and cdc31 conditional mutant cells arrest in mitosis with a monopolar mitotic spindle organized from a single SPB. EM analysis demonstrates that mutant cdc31 cells fail to duplicate the SPB. In addition, cdc31p exhibits genetic interactions with the SPB component sad1p and is required for sad1p localization. Finally, cdc31 mutant can undergo single or multiple rounds of septation before the exit from mitosis, suggesting that cdc31p activity or SPB duplication may be required for the proper coordination between the exit from mitosis and the initiation of septation.